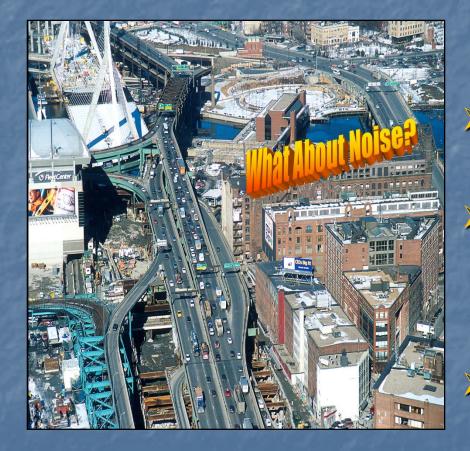

Curious Challenges: Controlling Construction Noise Wentworth Institute of Technology, 11/14/16



Erich Thalheimer

INCE Board Certified Principal Acoustical Engineer WSP|Parsons Brinckerhoff

Phone: (617) 960-5039 Email: Thalheimer@pbworld.com

Introduction

Everybody loves new infrastructure & transportation projects - when they're done!

But what about the dreaded construction phase?

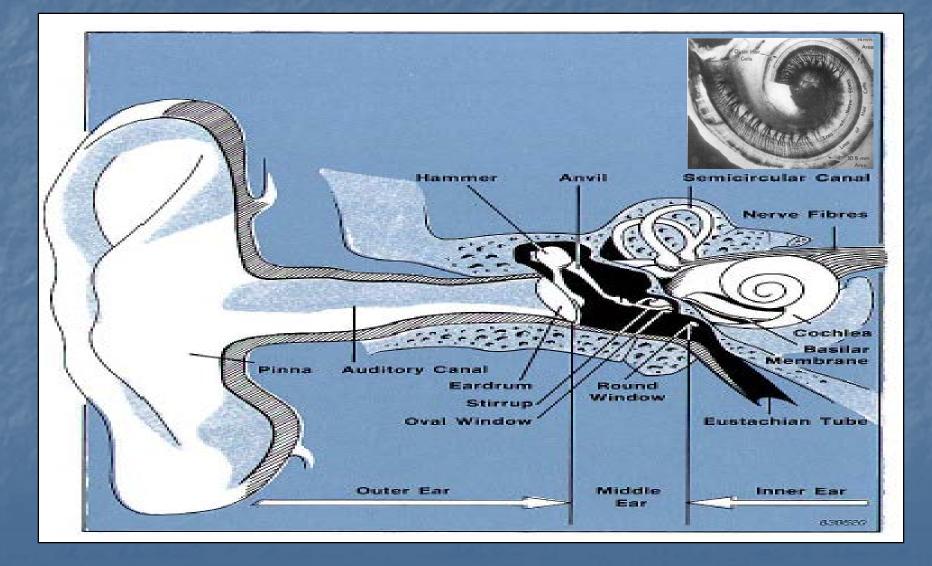
How can people cope with the disruption, traffic jams, dust, and most importantly, noise during construction?

You'd never believe some of the curious noise control challenges that can present themselves.

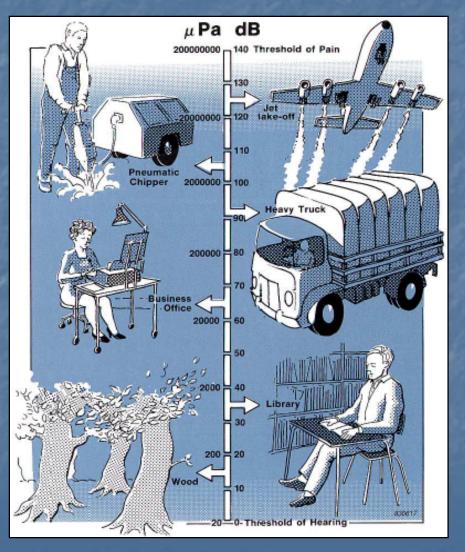
Noise vs. Sound

Sound

Pleasant, controllable, desirable, pleasing, understandable


Noise

Too loud, annoying, uncontrollable, interfering, undesirable


But not all people react the same way to noise

Human Auditory System

What's a Decibel Anyway?

Humans can hear fluctuations in air pressure over seven orders of magnitude

 More convenient scale needed: *Decibels* Alexander Graham Bell

> dB = 10 Log (P/P_o)² Where P_o = 20μ Pa

Does 0 dB mean no sound?

Subjective Response

Humans respond to sound logarithmically Better resolution at lower sound levels

									Signifi	cant	
						Ot	ovious				
			Not	ticeable							
	Ju:	st Notice	able								
		2	3	4	5	6	7	8	9	10	
0	1										

Big Dig Noise Control > Major urban construction for 15 years Must control both "physical" and "political" noise Most politically-charged environmental issue Noise accounted for half of all complaints > Challenges can threaten project schedule/costs Must satisfy affected public, Fed/State/City officials, news media, and project managers Must be responsive, equitable, and successful!

Noise Control Strategy

> High level of "command support"
 > Implement consistent and equitable noise control policies
 > <u>Proactive avoidance</u> of excessive noise
 > <u>Velvet glove approach</u>

Ability to react with needed solutions
Iron fist approach

Open and honest dialog with community – builds trust & tolerance

Construction Noise Control Spec. 721.560

CA/T Project Lot-Line Construction Noise Criteria Limits

Noise Receptor Locations	Lot-Line Construction Noise Criteria Limits in dBA, RMS slow						
and Land-Uses	Daytime (7 AM - 6 PM)		Evening (6 PM - 10 PM)		Nighttime (10 PM - 7 AM)		
	L10	Lmax	L10	Lmax	L10	Lmax	
Noise-Sensitive Locations: (Residences, Institutions, Hotels, etc.)	75 or Baseline + 5 (which ever is louder)	85 90 (impact)	Baseline + 5	85	Baseline + 5 (<i>if Baseline</i> < 70) Baseline + 3 (<i>if Baseline</i> > 70)	80 80	
Commercial Areas: (Businesses, Offices, Stores, etc.)	80 or Baseline + 5	None	None	None	None	None	
Industrial Areas: (Factories, Plants, etc.)	85 or Baseline + 5	None	None	None	None	None	

Notes: L10 noise readings are averaged over 20 minute intervals. Lmax noise readings occur instantaneously. Baseline noise conditions must be measured and established prior to construction work commencing.

CA/T Equipment Noise Limits (dBA Lmax 'slow' at 50 feet)

All Other Equipment	85 dBA
Auger Drill Rig	84 dBA
Backhoe	78 dBA
Boring Jack Unit	80 dBA
Chain Saw	84 dBA
Clam Shovel	87 dBA
Compactor	80 dBA
Compressor (air)	78 dBA
Concrete Plant	83 dBA
Concrete Truck	79 dBA
Concrete Pump	81 dBA
Concrete Saw	90 dBA
Crane	81 dBA
Dozer	82 dBA
Dump Truck	76 dBA
Excavator	81 dBA
Flat bed Truck	74 dBA
Front End Loader	79 dBA
Generator	81 dBA
Gradall	83 dBA
Grader	85 dBA
Grapple	85 dBA

.

Impact Pile Driver	95 dBA
Jackhammer	85 dBA
Mounted Hoe Ram	90 dBA
Paver	77 dBA
Pavement Scarifier	85 dBA
Pneumatic Tools	85 dBA
Pumps	77 dBA
Rivet Buster Chipper	79 dBA
Rock Drill	81 dBA
Roller	80 dBA
Scraper	84 dBA
Shears	90 dBA
Slurry Plant	78 dBA
Slurry Trencher	80 dBA
Soil Mix Drill Rig	80 dBA
Tractor	84 dBA
Vacuum Excavator	85 dBA
Vac. Street Sweeper	80 dBA
Ventilation Fan	79 dBA
Vibratory Mixer	80 dBA
Vibratory Pile Driver	95 dBA
Welder	73 dBA

Source Noise Controls

Source controls are most effective

- Prevents noise from being created
- Quieter equipment or alternative methods
- Time restrictions, prohibitions
- Backup Alarms!

Pathway Noise Controls

Noise barrier walls, mufflers, silencers and enclosures, increased distance

Barriers must be tall enough to block the line-of-sight

 Must ensure no gaps through barriers
 1% hole lets 90% of the noise through

Receiver Noise Controls

- Noise control directly affecting the listener
- Relocation out of noisy environment
- Building soundproofing
 Windows, doors, roof, AC
- Personal hearing protection
- Compensation (Hush \$\$)
 Not with public money!

Public outreach, information, dialog, involvement

Vacuum Excavators

- Incredible low frequency rumble
- Can penetrate buildings within several city blocks
- Makes people feel sick

In-depth noise study done for a typical vac-truck

Roots blower found to be the cause of the problem

Noise Control

Extra enclosures, better silencers, operate at lowerpower levels

Residential Soundproofing
 Proactive noise mitigation

Install additional window sash
 Installed inside the residence
 Need a Right-of-Entry Agreement

Avoids problems such as:
 Historic properties restrictions
 Exposing asbestos or lead paint

 Can provide additional 10 decibels of noise reduction
 Perceived as half as loud!

Annoying building vibrations Unexpected problem Caused by shifting elevated I-93 Artery onto temporary columns Significant community outrage > People could not sleep Complained of a variety of maladies Politicians and media got involved Extensive vibration study done Confirmed disturbing vibration levels > Vibration control measures Scarify/smooth Artery surface Install vibration isolation bed springs

Noise-related lawsuits! > Harbor Towers > Nighttime disturbances Spaulding Rehabilitation Hospital Wanted building to be taken Construction contractor claims Lost time and inefficiencies Mounted full defenses in all cases Special noise study for Spaulding Hosp. > Judge ruled in Project's favor Offered Harbor Towers window sashes Won every contractor claim suit

> Make a hoe ram disappear! Needed to work all night long near residential area > Built the "Flynn Memorial Garage" > Three-sided, roofed enclosure > Double-layer plywood walls Insulated wall air gap Successfully reduced hoe ram

noise to allow work all night

Be careful joking in public!

Community meeting to present noise control plans

Asked how effective noise curtains would be?

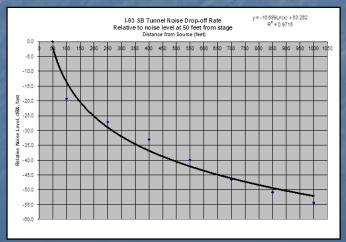
Did a spur of the moment live "demonstration"

Wrong thing to do!

Elderly woman explained the err of my ways
 And she was right

FHWA Process Review - CA/T Project Noise Control Program						
		Past Costs	Future Costs	Total Costs		
Cost Category		<u> 1996 - 1997</u>	<u> 1998 - 2004</u>	Entire Project		
Direct Expenses (staff, HO, subs)		\$2,522,520	\$2,803,840	\$5,326,360		
Indirect Expenses	(equipment)	\$44,500	\$57,500	\$102,000		
Mitigation Costs (barriers, windows)	\$2,189,650	\$2,539,950	\$4,729,600		
Contractor Costs (Spec 721.560)		\$1,503,179	\$3,917,481	\$5,420,660		
	Sub Totals =	\$6,259,849	\$9,318,771	\$15,578,620		
			Total Cost =	\$15,578,620		
Project o	duration in years =	18	Annual Cost =	\$865,479		
Relative to to	otal Project cost =	\$10,400,000,000	Percentage =	0.15%		

Surviving a Federal audit!


Feds paying 80% of costs with FHWA responsible for oversight

Summarized noise control program's policies, strategies, methods and costs for in-depth FHWA "Process Review"

Estimated costs to be about
 \$16 million over life of project

 Survived audit, Feds pleased!
 FHWA Roadway Construction Noise Model (RCNM, 2007)

Boston Pops concert in tunnel > To celebrate I-93 NB tunnel opening Needed suitable acoustics Reverberation, propagation drop-off Tested acoustics in empty tunnel > Worked with Pops' sound engineers 10 gauge yachting cannon Sounded good acoustically! > But event scratched due to concern for public perception of costs

Questions?

